DATASHEET

8PIN DIP IGBT/MOSFET 2.5A Output Current GATE DRIVER PHOTOCOUPLER EL3120 Series

Preliminary

<u>Schematic</u>

EVERLIGH

Pin Configuration

- 1, No Connection
- 2, Anode
- 3, Cathode
- 4. No Connection
- $5,\,V_{\text{EE}}$
- 6, Vout
- 7, Vout
- 8, Vcc

A $0.1\mu\text{F}$ bypass capacitor must be connected between pins 8 and 5

Features:

- Rail-to-rail output voltage
- Guaranteed performance from -40 to 110°C
- Peak Output Current : IoP = 2.5A (max)
- Threshold Input Current: IFLH = 5 mA (max)
- High isolation voltage between input and output (Viso=5000 V rms)
- Pb free and RoHS compliant.
- UL and cUL approved
- VDE approved
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CQC approved

Description

The EL3120 consists of an infrared light emitting diodes and integrated high gain, high-speed photo detectors. The device is housed in a 8 pin DIP package.

The photo detector has an internal shield that provides aguaranteed common-mode transient immunity of ± 25 kV/µs. It is suitable for direct gate driving circuit for IGBTs or power MOSFETs.

Applications

- Isolated IGBT/Power MOSFET Gate Drive
- Uninterruptible power supply
- Inverters
- Home appliances, such as fan heaters, etc.

Absolute Maximum Ratings (Ta=25°C)

	Parameter	Symbol	Rating	Unit
	Forward current	l _F	25	mA
Input	Pulse Forward Current*1	I _{FP}	1	А
	Reverse voltage	V _R	5	V
	"H" Peak Output current	I _{OPH}	2.5	А
	"L" Peak Output Current	I _{OPL}	I _{OPL} 2.5	
Output	Pear Output Voltage	Vo	30	V
	Supply Voltage	$V_{CC} V_{EE}$	15 to 30	V
Operating frequency		f	50	kHz
Isolation v	voltage *2	V _{ISO}	5000	V rms
Total Pow	er Dissipation	P _T	300	mW
Operating	temperature	T _{OPR}	-40 ~ +110	°C
Storage te	emperature	T _{STG}	-55 ~ +125	°C
Soldering temperature *3		T _{SOL}	260	°C

Notes:

*1 Pulse width $\leq 1 \mu s$, 300pps.

*2 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1 to 4 are shorted together, and pins 5 to 8 are shorted together.

*3 For 10 seconds.

Electro-Optical Characteristics (TA=-40~110°C unless specified otherwise)

Input						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage	V_{F}	-	-	1.8	V	I _F = 10mA
Reverse Current	V_{R}	5	-	-	V	I _R = 10μΑ
Output						
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
High level supply current	I _{CCH}	-	1.4 1.5	3.2 mA 3.2	~ ^	I _F =10mA, V _{CC} =30V V _O = Open
Low level supply current	I _{CCL}				mA	I _F =0mA, V _{CC} =30V V _O = Open
Transfer Characteristi	cs					
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
High Level Output		-	-2.5	-1	A	IF=10mA, Vcc=30V, Vo=Vcc-3V
Current*4	lон	-	•	-2.5		I⊧=10mA, Vcc=30V, V _O =V _{CC} -6V
Low Level Output	15	1	2.5	·		I _F =0mA, V _{CC} =30V, V _O =V _{EE} +3V
Current*4	I _{OL}	2.5	-	-		I _F =0mA, V _{CC} =30V, V _O =V _{EE} +6V
High Level Output	V _{OH}	Vcc-6.25	-	-	V	I _F =10mA, V _{CC} =30V, I _O =-2.5A
Voltage		V _{CC} -0.25	-	-	V	I _F =10mA, V _{CC} =30V, I _O =-100mA
		-	-	Vee+6.25	V	I _F =10mA, V _{CC} =30V, I _O =2.5A
Low Level Output Voltage	Vol	-	-	V _{EE} +0.25	V	I⊧=10mA, Vcc=30V, I₀=100mA
Input Threshold Current	I _{FLH}	-	-	5	mA	V _{CC} =15 or 30V, V _O >5V
Input Threshold Voltage	V_{FHL}	0.8	-	-	V	V_{CC} =15 or 30V, V_{O} <5V
Under Voltage Lockout Threshold	Vuvlo+	11.0	-	13.5	V	I _F =10mA,, V _O >5V
Under Voltage Lockout Threshold	Vuvlo-	10	-	12.5	V	I _F =10mA,, V _O <5V

Switching Characteristics

Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
Propagation delay time to output High level	t _{PLH}	50	150	300	ns	$I_{F}= 7 \text{ to } 16\text{mA}$ $V_{CC}=15 \text{ to } 30\text{V}$ $C_{g} = 10\text{nF}, R_{g}=10\Omega,$
Propagation delay time to output Low level	t _{PHL}	50	150	300	ns	$f=10kHz$, $T_A=25^{\circ}C$ Duty Cycle=50%,
Pulse width distortion	tphl — tplh	-	-	100	ns	-
Propagation Delay Skew* ⁵	tрsк	-	-	150	ns	_
Output rise time	t _R	-	80	-	ns	
Output fall time	t _F	-	80	-	ns	
Common Mode Transient Immunity at Logic High* ⁶	СМ _Н	25	-	-	kV/µS	$I_F = 10mA$, $V_{CC}=30V$, $T_A=25^{\circ}C V_{CM}=1500V$
Common Mode Transient Immunity at Logic Low*7	CM∟	25		E	kV/µS	I _F = 0mA , V _{CC} =30V, T _A =25°C V _{CM} =1500V

Notes:

*4 Max. pulse width=10µS, max. duty cycle =1%

*5 Propagation delay skew is defined as the difference between the largest and smallest propagation delay times (i.e. t_{PHL} or t_{PLH}) of multiple samples. Evaluations of these samples are conducted under identical test conditions (supply voltage, input current, temperature, etc).

*6 Common mode transient immunity at output high is the maximum tolerable negative dv/dt on the trailing edge of the common mode impulse signal, V_{CM}, to assure that the output will remain high (i.e. V₀>15.0V)

*7 Common mode transient immunity at output low is the maximum tolerable positive dv/dt on the leading edge of the common mode pulse signal, V_{CM}, to assure that the output will remain low (i.e. V₀<1.0V)

EVERLIGHT

Typical Electro-Optical Characteristics Curves

EVERLIGHT

Fig.8 Threshold Input Current vs. Ambient Temperature

Fig.12 Propagation Delay vs. Ambient Temperature

Fig. 17 VOH Test circuit

Fig. 18 Vo∟ Test circuit

EVERLIGHT

EVERLIGHT

V_{cc}

Fig. 22 CMR Test circuit

Order Information

Part Number

Note

- Y = Lead form option (S1 or none)
- Z = Tape and reel option (TA, TB or none).
- V = VDE safety (optional).

Option	Description	Packing quantity
None	Standard	45 units per tube
(TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
(TB)	Surface mount lead form + TB tape & reel option	1000 units per reel

Package Dimension

(Dimensions in mm)

Standard DIP Type

Recommended pad layout for surface mount leadform

Notes.

Suggested pad dimension is just for reference only. Please modify the pad dimension based on individual need.

Device Marking

Notes

Т	denotes Factory
	No code : made in China
	T:made in Taiwan
EL	denotes EVERLIGHT
3120	denotes Device Number
Y	denotes 1 digit Year code
WW	denotes 2 digit Week code
V	denotes VDE (optional)

Tape & Reel Packing Specifications

Option TA

Direction of feed from reel

Direction of feed from reel

Tape dimensions

			~	A		
Dimension No.	Α	В	Do	D1	E	F
Dimension (mm) S1	10.4±0.1	10.0±0.1	1.5±0.1	1.5±0.25	1.75±0.1	7.5±0.1
				1		
Dimension No.	Ро	P1	P2	t	W	к

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T_{smin}) Temperature max (T_{smax}) Time (T_{smin} to T_{smax}) (t_s) Average ramp-up rate (T_{smax} to T_p)

Other

Liquidus Temperature (T_L) Time above Liquidus Temperature (t_L) Peak Temperature (T_P) Time within 5 °C of Actual Peak Temperature: T_P -5°C Ramp- Down Rate from Peak Temperature Time 25°C to peak temperature Reflow times Reference: IPC/JEDEC J-STD-020D

150 °C 200°C 60-120 seconds 3 °C/second max

217 °C 60-100 sec 260°C 30 s 6°C /second max. 8 minutes max. 3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.