# DATASHEET

# SMD • I<sup>2</sup>C Digital RGB Color Sensor CLS-16D17-34-DF6/TR8



#### Features

- CMOS technology
- · High sensitivity for Red, Green, and Blue light source
- Programmable exposure time
- · Convert incident light intensity to digital data
- 16-bit CS ADC resolution
- Automatic light flickering cancellation supporting
- Excellent transmittance of glass package
- · Spectral response close to human eye
- Linear CS response for easy design
- Low dark noise
- I<sup>2</sup>C protocol interface
- Low stop current, 1uA typical
- Operating range 1.7 ~ 3.0V

# Description

CLS16D17-34-DF6/TR8 is a digital RGB color sensor that can sense red, green, blue (RGB), and clear light. It can communicate via I<sup>2</sup>C interface.

Thanks to RGB color sensing, the brightness and color temperature of backlight can be adjusted based on ambient light source that makes the panel look more comfortable for human eyes.

The CS features are ideal for reducing power consumption and adjusting brightness of display equipments like LCD, PDP, LED, virtual keyboard and portable projector, etc.

The operation voltage ranges from 1.7 to 3.0 volt.

Copyright © 2015, Everlight All Rights Reserved. Release Date : 5.22.2015. Issue No: DLS-0000156

## Applications

- Digital TV, Tablet PC, Notebook PC
- Navigation systems
- Display-equipped portable devices,etc..

#### **Package Dimensions**



Note: Tolerances unless mentioned ±0.1mm. Unit = mm

| ADDR     | SLAVE ADDRESS |
|----------|---------------|
| LOW/OPEN | 0110_011      |
| HIGH     | 1001_100      |

LifecyclePhaseTempApproved

## **Absolute Maximum Ratings**

| Symbol | Parameter                       | Min  | Max   | Unit. | Remark |
|--------|---------------------------------|------|-------|-------|--------|
| VDD    | Supply Voltage                  | 0    | 4.0   | V     |        |
| Tstg   | Storage temperature range       | -40  | 85    |       |        |
| VO     | Digital output voltage range    | -0.5 | 4.0   | V     |        |
| 10     | Digital output current          | -1   | 20    | mA    |        |
| VHBM   | ESD tolerance, Human Body Model |      | 2,000 | V     |        |

# **Recommended Operating Condition**

| Symbol | Parameter                 | Min | Max | Unit. | Remark |
|--------|---------------------------|-----|-----|-------|--------|
| VDD    | Supply Voltage            | 1.7 | 3.0 | V     |        |
| TA     | Operating temperature     | -40 | 85  |       |        |
| VIL    | SCL,SDA input low voltage |     | 600 | mV    |        |
| VIH    | SCL,SDA input low voltage | 1.4 |     | V     | 1000   |

# **Electrical Specifications**

| Electrical Spe       | cifications                   |     |      |     |       |                  |
|----------------------|-------------------------------|-----|------|-----|-------|------------------|
| Symbol               | Parameter                     | Min | Тур. | Max | Unit. | Remark           |
| V <sub>DD</sub>      | Power Supply                  | 1.7 | -    | 3.0 | V     |                  |
| I <sub>STOP</sub>    | Power Down Current            |     |      | 1   | uA    | Power Down       |
| I <sub>DD_CRGB</sub> | Active Current for CRGB       | -   | 400  | 480 | uA    |                  |
| I <sub>DD_RGB</sub>  | Active Current for RGB        |     | 320  | 380 | uA    |                  |
| I <sub>DD_C</sub>    | Active Current for Clear      | 2-4 | 150  | 180 | uA    |                  |
| F <sub>osc</sub>     | Internal Oscillator Frequency | -   | 700  | -   | kHz   |                  |
| V <sub>OL</sub>      | INT, SDA output low voltage   | 0   |      | 0.4 | V     | 8mA Sink Current |

# **Optical Characteristics**

| Symbol               | Parameter                                   | Min | Тур. | Max | Unit.  | Remark                       |
|----------------------|---------------------------------------------|-----|------|-----|--------|------------------------------|
| $\lambda_{PC}$       | Peak Sensitivity wavelength of<br>Clear ADC |     | 615  |     | nm     |                              |
| $\lambda_{PR}$       | Peak Sensitivity wavelength of<br>Red ADC   |     | 680  |     | nm     |                              |
| $\lambda_{PG}$       | Peak Sensitivity wavelength of<br>Green ADC |     | 550  |     | nm     |                              |
| $\lambda_{PB}$       | Peak Sensitivity wavelength of<br>Blue ADC  |     | 490  |     | nm     |                              |
| A_C 000L             | ADC Count Value of Clear channel            |     | 0    | 1   | counts | @0lux, white color<br>LED    |
| A_C <sub>1000L</sub> | ADC Count Value of Red channel              | 835 | 806  | 959 | counts | @1000lux, white<br>color LED |
| A_R <sub>000L</sub>  |                                             |     | 0    | 1   | counts | @0lux, white color<br>LED    |

| A_R <sub>1000L</sub> | ADC Count Value of Green<br>channel | 866  | 967  | 1108  | counts | @1000lux, white color LED    |
|----------------------|-------------------------------------|------|------|-------|--------|------------------------------|
| A_G <sub>000L</sub>  |                                     |      | 0    | 1     | counts | @0lux, white color<br>LED    |
| A_G <sub>1000L</sub> | ADC Count Value of Blue channel     | 531  | 591  | 648   | counts | @1000lux, white<br>color LED |
| A_B 000L             |                                     |      | 0    | 1     | counts | @0lux, white color<br>LED    |
| A_B <sub>1000L</sub> | Full Scale Clear ADC Count          | 1713 | 1951 | 2082  | counts | @1000lux, white<br>color LED |
| DF <sub>CLEAR</sub>  |                                     |      |      | 65535 | counts |                              |
| DF <sub>RED</sub>    | Full Scale Red ADC Count            |      |      | 65535 | counts |                              |
| DF <sub>GREEN</sub>  | Full Scale Green ADC Count          |      |      | 65535 | counts |                              |
| DF <sub>BLUE</sub>   | Full Scale Blue ADC Count           |      |      | 65535 | counts |                              |

| Parameter                     | Test Conditions            | Red/Clea | ar Channel | Green/C | lear Channel | Blue/ Cl | ear Channel |
|-------------------------------|----------------------------|----------|------------|---------|--------------|----------|-------------|
|                               |                            | Min      | Max        | Min     | Max          | Min      | Max         |
| Color ADC Count               | $\lambda_{\rm D} = 470$ nm | 14%      | 20%        | 54%     | 61%          | 86%      | 92%         |
| value ratio:<br>Color / Clear | $\lambda_{\rm D}$ = 525nm  | 16%      | 19%        | 75%     | 79%          | 56%      | 62%         |
|                               | $\lambda_{\rm D}$ = 624nm  | 100%     | 109%       | 30%     | 32%          | 9%       | 10%         |
|                               |                            | ·        | ·          |         | -            |          |             |

#### I<sup>2</sup>C Characteristics

| $\lambda_{\rm D} = 624$ nm 100% 109                                                     | 30%         | 32%                 | 9%  | 0   | 10%  |
|-----------------------------------------------------------------------------------------|-------------|---------------------|-----|-----|------|
| I <sup>2</sup> C Characteristics                                                        |             |                     |     |     |      |
| Parameter                                                                               |             | Symbol              | Min | Max | Unit |
| SCL clock frequency                                                                     |             | f <sub>scl</sub>    | 0   | 400 | kHz  |
| Hold time after (repeated) START condition. After this p first clock pulse is generated | period, the | t <sub>hd;sta</sub> | 0.6 | -   | US   |
| LOW period of the SCL clock                                                             |             | t <sub>LOW</sub>    | 1.3 | -   | us   |
| HIGH period of the SCL clock                                                            |             | t <sub>HIGH</sub>   | 0.6 | -   | US   |
| Setup time for a repeated START condition                                               |             | t <sub>su;sta</sub> | 0.6 | -   | us   |
| Data hold time                                                                          |             | t <sub>HD;DAT</sub> | 0   | 0.9 | us   |
| Data setup time                                                                         |             | t <sub>su;dat</sub> | 100 | -   | ns   |
| Clock/data fall time                                                                    |             | t <sub>F</sub>      | 0   | 300 | ns   |
| Clock/data rise time                                                                    |             | t <sub>R</sub>      | 0   | 300 | ns   |
| Setup time for STOP condition                                                           |             | t <sub>su;sto</sub> | 0.6 | -   | us   |
| Bus free time between a STOP and START condtion                                         |             | t <sub>BUF</sub>    | 1.3 | -   | us   |



Definition of timing for fast mode devices on the I2C bus

#### I<sup>2</sup>C Operation Overview

The I<sup>2</sup>C is one of industrial standard serial communication protocols, and which uses 2 bus lines Serial Data Line (SDA) and Serial Clock Line (SCL) to exchange data. Because both SDA and SCL lines are open-drain output, each line needs pull-up resistor. The features are as shown below.

- Compatible with I<sup>2</sup>C interface
- Up to 400kHz data transfer speed
- Support two 7-bit slave address
- Slave operation only

#### I<sup>2</sup>C Bit Transfer

The data on the SDA line must be stable during HIGH period of the clock, SCL. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW. The exceptions are START(S), repeated START(Sr) and STOP(P) condition where data line changes when clock line is high.



#### Bit Transfer on the I<sup>2</sup>C-Bus

#### Start / Repeated Start / Stop

One master can issue a START (S) condition to notice other devices connected to the SCL, SDA lines that it will use the bus. A STOP (P) condition is generated by the master to release the bus lines so that other devices can use it.

- A high to low transition on the SDA line while SCL is high defines a START (S) condition.
- A low to high transition on the SDA line while SCL is high defines a STOP (P) condition.

START and STOP conditions are always generated by a master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, ie, the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START conditions are functionally identical.



# START and STOP Condition

#### **Data Transfer**

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL.



#### STOP or Repeated START Condition

#### Acknowledge

The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it is unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave. And also, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDA line (Data Packet). The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.



 R
 Copyright © 2015, Everlight All Rights Reserved. Release Date : 5.22.2015. Issue No: DLS-0000156
 WWW.everlight.com

 LifecyclePhaseTempApproved
 Expired Period: 3 Months

#### Operation

The I<sup>2</sup>C is byte-oriented serial protocol and data transfer between master and this slave device is initiated by a start condition(S) from master. After start condition, the master sends 7-bit slave address and 1-bit read-write control bit. We call these 8-bit data address packet. The next bytes followed by address packet are all data packet unless another start condition is detected before a stop condition.

The 2<sub>nd</sub> byte sent from master after address packet with write direction is interpreted as base register or memory address byte. And this base address is incremented only when master transmits more than 2 bytes after start condition because the 2<sub>nd</sub> byte is register address field.

The color sensor's I<sup>2</sup>C slave address is configured as "0110011<sub>B</sub>" or "1001100<sub>B</sub>" according to the input condition of ADDR pin.

## Write Protocol (Master Transmitter)

The master transmits a start condition(S), slave address and Write bit. If the high 7-bits of address packet equal to the device's slave address, the color sensor acknowledges by pulling down the SDA line at the 9th SCL clock period. After address packet and acknowledge bit, the master transmits a data which is used for base address accessing internal memory or register of the device. The master transmits a number of data to be written and the slave always acknowledges for every data received. To finish transfer the master sends a stop condition regardless of the acknowledgement.

The destination address for incoming data byte increments automatically by one data packet. For example, if master transmits 5 data bytes including a base address(=register address in the following figure) byte and the base address is configured as 00H, the internal address is defined as 00H for 1st data byte, 01H for 2nd data byte, 02H for 3rd data byte and 03H for 4th data byte. This applies to Read Protocol also.



**I2C Write Protocol** 

**Expired Period: 3 Months** 

LitecyclePhase1empApproved

# Registers

The Color Sensor is controlled and monitored by 19 registers. These registers provide a variety of control functions and can be read to determine results of the ADC conversions.

| Name    | Address         | Dir | Default         | Description                               |
|---------|-----------------|-----|-----------------|-------------------------------------------|
| ADDRSET | -               | W   |                 | Address Set Register                      |
| CONTROL | 00 <sub>H</sub> | R/W | 00 <sub>H</sub> | Control Register                          |
| INTR    | 01 <sub>H</sub> | R/W | 00 <sub>H</sub> | Interrupt Control Register                |
| RGBCON  | 02 <sub>H</sub> | R/W | 01 <sub>H</sub> | RGB mode control Register                 |
| WTIME   | 05 <sub>H</sub> | R/W | 01 <sub>H</sub> | Wait Time Register                        |
| CILTL   | 06 <sub>H</sub> | R/W | 00 <sub>H</sub> | CS Interrupt Low Threshold Low Register   |
| CILTH   | 07 <sub>н</sub> | R/W | 00 <sub>H</sub> | CS Interrupt Low Threshold High Register  |
| CIHTL   | 08 <sub>H</sub> | R/W | FF <sub>H</sub> | CS Interrupt High Threshold Low Register  |
| CIHTH   | 09 <sub>H</sub> | R/W | FF <sub>H</sub> | CS Interrupt High Threshold High Register |
| PERSIST | 0E <sub>H</sub> | R/W | 11 <sub>H</sub> | Interrupt Persistence Register            |
| ID      | 11 <sub>H</sub> | R   | E0 <sub>H</sub> | Revision Number read Register             |
| CDATAL  | 12 <sub>H</sub> | R   | 00 <sub>H</sub> | Clear ADC Data Low Register               |
| CDATAH  | 13 <sub>H</sub> | R   | 00 <sub>H</sub> | Clear ADC Data High Register              |
| RDATAL  | 14 <sub>H</sub> | R   | 00 <sub>H</sub> | Red ADC Data Low Register                 |
| RDATAH  | 15 <sub>H</sub> | R   | 00 <sub>H</sub> | Red ADC Data High Register                |
| GDATAL  | 16 <sub>H</sub> | R   | 00 <sub>H</sub> | Green ADC Data Low Register               |
| GDATAH  | 17 <sub>H</sub> | R   | 00 <sub>H</sub> | Green ADC Data High Register              |
| BDATAL  | 18 <sub>H</sub> | R   | 00 <sub>H</sub> | Blue ADC Data Low Register                |
| BDATAH  | 19 <sub>н</sub> | R   | 00 <sub>H</sub> | Blue ADC Data High Register               |
| AGC     | 1E <sub>H</sub> | R/W | 01 <sub>H</sub> | ADC Gain control Register                 |

# **Registers Descripion**

| 7       | 6          | 5                    | 4                                                                                                                                                                               | 3                                                                                                                                                              | 2                                                                              | 1                | 0             |                   |
|---------|------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|---------------|-------------------|
| _       | -          | -                    | ADDR4                                                                                                                                                                           | ADDR3                                                                                                                                                          | ADDR2                                                                          | ADDR1            | ADDR0         |                   |
| -       | -          | -                    | RW                                                                                                                                                                              | RW                                                                                                                                                             | RW                                                                             | RW               | RW            |                   |
|         |            |                      |                                                                                                                                                                                 |                                                                                                                                                                |                                                                                |                  | Initial value | e : 00            |
|         | A          | DDR[4:0]             | initiates a w                                                                                                                                                                   | rite protocol w                                                                                                                                                | ient register ad<br>ith start bit and<br>nfigure registe                       | d slave addres   |               |                   |
| ONTROL  | (Control R | egister)             |                                                                                                                                                                                 |                                                                                                                                                                |                                                                                |                  |               | 00 <sub>H</sub>   |
| 7       | 6          | 5                    | 4                                                                                                                                                                               | 3                                                                                                                                                              | 2                                                                              | 1                | 0             |                   |
| SOFTRST | CTCON1     | CTCONO               | - NOTE1                                                                                                                                                                         | MODE2                                                                                                                                                          | MODE1                                                                          | MODE0            | POWER         |                   |
| RW      | RW         | RW                   |                                                                                                                                                                                 | RW                                                                                                                                                             | RW                                                                             | RW               | RW            |                   |
|         |            |                      |                                                                                                                                                                                 |                                                                                                                                                                |                                                                                |                  | Initial value | e : 00            |
|         | SO         | FTRST                | Soft reset. T                                                                                                                                                                   | his bit is auto                                                                                                                                                | -cleared.                                                                      |                  |               |                   |
|         |            |                      | 0 No oper                                                                                                                                                                       | ation                                                                                                                                                          |                                                                                |                  |               |                   |
|         |            |                      |                                                                                                                                                                                 |                                                                                                                                                                | -                                                                              |                  |               |                   |
|         |            |                      | 1 Reset in                                                                                                                                                                      | iternal registe                                                                                                                                                | IS                                                                             |                  |               |                   |
|         | AT         | CON[1:0]             |                                                                                                                                                                                 | iternal registe<br>ion time(CTIN                                                                                                                               |                                                                                | his bit field is | used with IT  | - cc              |
|         | AT         | CON[1:0]             |                                                                                                                                                                                 | ion time(CTIN                                                                                                                                                  | //E) select. Th                                                                | his bit field is | used with IT  | _cc               |
|         | AT         | CON[1:0]             | CS Integrat                                                                                                                                                                     | tion time(CTINegister.                                                                                                                                         | ME) select. Th                                                                 |                  | used with IT  | cc                |
|         | AT         | CON[1:0]             | CS Integrat<br>RGBCON re                                                                                                                                                        | tion time(CTINegister.                                                                                                                                         | ME) select. Th                                                                 | V=1              | used with IT  | cc                |
|         | AT         | CON[1:0]             | CS Integrat<br>RGBCON re<br>CTCON[1:0                                                                                                                                           | ion time(CTIN<br>egister.<br>] IT_CON                                                                                                                          | ME) select. Th<br>=0 IT_CON                                                    | V=1              | used with IT  | cc                |
|         | AT         | CON[1:0]             | CS Integrat<br>RGBCON re<br>CTCON[1:0<br>00                                                                                                                                     | ion time(CTIN<br>egister.<br>] IT_CON<br>12.5ms                                                                                                                | ME) select. Th<br>=0 IT_CON<br>800ms                                           | V=1              | used with IT  | cc                |
|         | AT         | CON[1:0]             | CS Integrat<br>RGBCON re<br>CTCON[1:0<br>00<br>01                                                                                                                               | ion time(CTIN<br>egister.<br>] IT_CON<br>12.5ms<br>25ms                                                                                                        | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms                                  | V=1              | used with IT  | cc                |
|         |            |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11                                                                                                                   | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms                                                                                           | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | cc                |
|         |            | CON[1:0]<br>9DE[2:0] | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS                                                                                                     | ion time(CTIN<br>egister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo                                                                       | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | cc                |
|         |            |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 No                                                                                           | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>o operation                                                            | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | cc                |
|         |            |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 No<br>100 Ci                                                                                 | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>o operation<br>ear                                                     | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | cc                |
|         |            |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 Nd<br>100 Cd<br>101 Cl                                                                       | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>operation<br>ear<br>ear + R                                            | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | cc                |
|         |            |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 Nd<br>100 Cl<br>101 Cl<br>001 Re                                                             | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>operation<br>ear<br>ear + R<br>ed                                      | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | cc                |
|         |            |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 Nd<br>100 Cl<br>101 Cl<br>001 Re<br>101 Gr                                                   | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>operation<br>ear<br>ear + R<br>ed<br>reen                              | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | cc                |
|         |            |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 Nd<br>100 Cd<br>101 Cd<br>001 Rd<br>101 Gd<br>001 Rd<br>101 Gd                               | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>operation<br>ear<br>ear + R<br>ed<br>reen<br>ue                        | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | . <sup>-</sup> cc |
|         |            |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 Nd<br>100 Cl<br>101 Cl<br>001 Rd<br>101 Cl<br>001 Rd<br>101 Gr<br>011 Bl<br>110 R/           | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>operation<br>ear<br>ear + R<br>ed<br>reen<br>ue<br>G/B                 | ME) select. Th<br>=0 IT_CON<br>800ms<br>400ms<br>200m<br>100ms                 | V=1              | used with IT  | cc                |
|         | MO         | DE[2:0]              | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 No<br>100 Cl<br>101 Cl<br>001 Re<br>101 Gr<br>011 Bl<br>110 R/<br>111 Cl                     | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>poperation<br>ear<br>ear + R<br>ed<br>reen<br>ue<br>G/B<br>ear + R/G/B | ME) select. Th<br>=0 IT_CON<br>800ms<br>200m<br>100ms<br>ode. <sup>note2</sup> | <b>J</b> =1      |               | cc                |
|         | MO         |                      | CS Integrat<br>RGBCON rd<br>CTCON[1:0<br>00<br>01<br>10<br>11<br>Control CS<br>000 Nd<br>100 Cl<br>101 Cl<br>001 Rd<br>101 Cl<br>001 Rd<br>101 Cl<br>011 Bl<br>110 R/<br>111 Cl | ion time(CTINegister.<br>] IT_CON<br>12.5ms<br>25ms<br>50ms<br>100ms<br>Operating Mo<br>poperation<br>ear<br>ear + R<br>ed<br>reen<br>ue<br>G/B<br>ear + R/G/B | ME) select. Th<br>=0 IT_CON<br>800ms<br>200m<br>100ms<br>ode. <sup>note2</sup> | <b>J</b> =1      |               | cc                |

NOTE1 Do not write '1' to this bit filed for proper operation.

R 10 Copyright © 2015, Everlight All Rights Reserved. Release Date : 5.22.2015. Issue No: DLS-0000156

LifecyclePhaseTempApproved

NOTE2 The real MODE[2:0] bits are updated after internal oscillator is enabled. So reading CONTROL register will return "---- 0000B" when writing '1' to these bits while POWER bit is disabled or enabling MODE[2:0] and POWER bits simultaneously.

By controlling MODE[2:0] bits individually, color sensor can operate as a single channel or multi channel CS.

| 7     | 6        | 5     | 4                               | 3                | 2                                | 1               | 0             |
|-------|----------|-------|---------------------------------|------------------|----------------------------------|-----------------|---------------|
| -     | -        | CINTE | INTEDGE                         | _ NOTE           | CINTEN                           | RGBSEL1         | RGBSEL0       |
| -     | -        | R     | RW                              | -                | RW                               | RW              | RW            |
|       |          |       |                                 |                  |                                  |                 | Initial value |
| CINTF |          |       | CS Interrupt Fl                 | ag. Indicates t  | hat the device                   | is asserting an | interrupt.    |
|       |          |       | This bit is read                | I-only, but writ | ting 0 to this bi                | clears CINTF    | flag.         |
|       |          |       | 0 No Int                        | errupt or inter  | rupt cleared.                    |                 |               |
|       |          |       | 1 ALS ir                        | nterrupt reque   | sted.                            |                 |               |
| INTE  | DGE      |       | Interrupt signa clock,typically |                  | is pulse type a<br>The host need |                 |               |
|       |          |       | 0 Level                         | interrupt        |                                  |                 |               |
|       |          |       | 1 Edge                          | interrupt        |                                  |                 |               |
| CINT  | EN       |       | Enablees CS I                   | nterrupt gener   | ation                            |                 |               |
|       |          |       | 0 CS in                         | terrupt output   | is disabled.                     |                 |               |
|       |          |       | 1 CS int                        | errupt occurs    | on/INT pin.                      |                 |               |
| RGB   | SEL[1:0] |       | CS Interrupt S                  | Source Select.   |                                  |                 |               |
|       |          |       | RGBSEL[1:0]                     |                  |                                  |                 |               |
|       |          |       | 00 Clea                         | r channel        |                                  |                 |               |
|       |          |       | 01 Red                          | channel          |                                  |                 |               |
|       |          |       | 10 Gree                         | n channel        |                                  |                 |               |
|       |          |       | 11 IR ch                        | annel            |                                  |                 |               |

NOTE Do not write '1' to this bit filed for proper operation.

#### RGBCON (RGB mode control Register)

| 7      | 6      | 5         | 4                   | 3               | 2               | 1             | 0               |
|--------|--------|-----------|---------------------|-----------------|-----------------|---------------|-----------------|
| CGAIN1 | CGAINO | IT_CON    | -                   | -               | -               | - NOTE        | - NOTE          |
| RW     | RW     | RW        | -                   | -               | -               | -             |                 |
|        |        |           |                     |                 |                 |               | Initial value : |
|        | CO     | SAIN[1:0] | CS ADC Gain Se      | elect. The gair | n is common for | all C/R/G/B A | DC channels.    |
|        |        |           |                     |                 |                 |               |                 |
|        |        |           | CGAIN[1:0]          |                 |                 |               |                 |
|        |        |           | CGAIN[1:0]<br>00 16 | x               |                 |               |                 |
|        |        |           |                     |                 |                 |               |                 |
|        |        |           | 00 16               |                 |                 |               |                 |

02<sub>H</sub>

IT\_CON

1

Specifies the CS integration time range.

- 0 CS integration time ranges from 12.5ms to 100ms.
  - CS integration time ranges from 100ms to 800ms.

NOTE Do not write '1' to this bit filed for proper operation.

| 7       | 6      | 5      | 4                 | 3                | 2               | 1               | 0                  |
|---------|--------|--------|-------------------|------------------|-----------------|-----------------|--------------------|
| ONESHOT | WTIME6 | WTIME5 | WTIME4            | WTIME3           | WTIME2          | WTIME2          | WTIME1             |
| RW      | RW     | RW     | RW                | RW               | RW              | RW              | RW                 |
|         |        |        |                   |                  |                 |                 | Initial value : 0  |
|         |        |        |                   |                  |                 |                 |                    |
|         | ONESI  |        | Stops ADC integra | •                | etion of one in | tegration cycle |                    |
|         |        | (      | ) Continuou       | s operation.     |                 |                 |                    |
|         |        |        |                   |                  |                 |                 | ls will automatica |
|         |        |        |                   | operation, re-a  |                 |                 | er is to be cleare |
|         | МТІМЕ  |        | Vait Time. Specif | •                |                 |                 |                    |
| terval. |        | .[0.0] |                   |                  |                 |                 |                    |
|         |        | v      | Nait time = 5ms > | WTIME[6:0]       |                 |                 |                    |
|         |        | -      | The maximum wa    | it time is about | t 635ms (1111   | 111B).          |                    |
|         |        | (      | 0000000 No        | wail             |                 |                 |                    |
|         |        | (      | 0000001 5m        | s                |                 |                 |                    |
|         |        |        | 0000010 10r       |                  |                 |                 |                    |
|         |        |        | 0001010 50r       |                  |                 |                 |                    |
|         |        |        |                   | )ms              |                 |                 |                    |
|         |        |        |                   |                  |                 |                 |                    |
|         |        |        |                   | )ms              |                 |                 |                    |
|         |        |        | 1010000 400       | )ms              |                 |                 |                    |
|         |        |        | 111111 635        | ōms              |                 |                 |                    |

The WTIME is used to reduce average power consumption, because the CS ADC stop integrating during wait time period. When MODE[2:0]!=000B, the internal operating state machine repeats CS and WAIT state continuously. The internal operating mode is as follows : CS—WAIT—CS—WAIT—CS—WAIT…

**CAUTION** Although setting a larger wait time contributes to reduce average consumption current, it makes update period and response time longer.



The interrupt threshold registers store the values to be used as the high and low trigger points for the adc data registers. If the value of adc data register crosses below or equal to the low threshold specified, an interrupt can be asserted on the interrupt pin. Likewise, if the result from ADC conversion crosses above the high threshold specified, an interrupt can be asserted on the asserted on the interrupt pin.

These high and low threshold registers are all 16-bit wide and the concatenated CILTH and CILTL is used as interrupt low threshold(=CILT) and the concatenated CIHTH and CIHTL is used as interrupt high threshold(=CIHT).

| 7                                                                                                       | 6                                                                | 5                                                             | 4                                                                                                | 3                                           | 2                      | 1                                | 0                                                 |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|----------------------------------|---------------------------------------------------|--|
| -                                                                                                       | -                                                                | -                                                             | -                                                                                                | CPER3                                       | CPER2                  | CPER1                            | CPER0                                             |  |
| -                                                                                                       | -                                                                | -                                                             | -                                                                                                | RW                                          | RW                     | RW                               | RW                                                |  |
|                                                                                                         |                                                                  |                                                               |                                                                                                  |                                             |                        |                                  | Initial value                                     |  |
|                                                                                                         | CPER[3:0]                                                        |                                                               | CS Interrupt persistence. These bit field control the rate of CS interr<br>request to host chip. |                                             |                        |                                  |                                                   |  |
|                                                                                                         |                                                                  |                                                               | CPER[3:0]                                                                                        |                                             |                        |                                  |                                                   |  |
|                                                                                                         |                                                                  |                                                               | 0000                                                                                             | Every ALS                                   | cycle generat          | es an interrup                   | ot.                                               |  |
|                                                                                                         |                                                                  |                                                               | 0001                                                                                             | 1 consecut                                  | tive ALS ADC           | value out of ra                  | ange.                                             |  |
|                                                                                                         |                                                                  |                                                               | 0010                                                                                             | 2 consecut                                  | tive ALS ADC           | value out of ra                  | ange.                                             |  |
|                                                                                                         |                                                                  |                                                               |                                                                                                  |                                             |                        |                                  |                                                   |  |
|                                                                                                         |                                                                  |                                                               | 1111                                                                                             | 15 consecu                                  | utive ALS ADC          | value out of                     | range.                                            |  |
|                                                                                                         | write '1' to this<br>on ID read R                                |                                                               | roper operation                                                                                  | n.                                          |                        |                                  |                                                   |  |
|                                                                                                         |                                                                  |                                                               | roper operation                                                                                  | n.<br>3                                     | 2                      | 1                                | 0                                                 |  |
| (Revisio                                                                                                | on ID read R                                                     | egister)                                                      |                                                                                                  |                                             | 2                      | 1<br>REVNO1                      | 0<br>REVNO0                                       |  |
| (Revisio                                                                                                | on ID read R                                                     | egister)<br>5                                                 |                                                                                                  | 3                                           | 2<br>-<br>-            |                                  | REVINO0<br>R                                      |  |
| (Revisio                                                                                                | on ID read R                                                     | egister)<br>5                                                 |                                                                                                  | 3                                           | 2                      | REVNO1                           | REVINO0                                           |  |
| (Revisio                                                                                                | on ID read R<br>6<br>-<br>-                                      | egister)<br>5                                                 |                                                                                                  | 3                                           |                        | REVNO1                           | REVINO0<br>R                                      |  |
| (Revisio<br>7<br>-<br>-                                                                                 | on ID read R<br>6<br>-<br>-<br>RI                                | egister)<br>5<br>-<br>-<br>EVNO[1:0]                          | 4                                                                                                | 3<br>-<br>-<br>read                         |                        | REVNO1                           | REVINO0<br>R                                      |  |
| (Revisio<br>7<br>-<br>-                                                                                 | on ID read R<br>6<br>-<br>-<br>RI                                | egister)<br>5<br>-<br>-<br>EVNO[1:0]                          | 4<br>-<br>Revision ID                                                                            | 3<br>-<br>-<br>read                         | 2<br>-<br>-            | REVNO1                           | REVINO0<br>R                                      |  |
| (Revisio<br>7<br>-<br>-<br>ATAL (<br>7                                                                  | on ID read R<br>6<br>-<br>-<br>RI<br>ALS Clear C                 | egister)<br>5<br>-<br>EVNO[1:0]<br>H ADC Data                 | 4<br>-<br>Revision ID                                                                            | 3<br>-<br>-<br>read<br>ter)                 | -                      | REVINO1<br>R                     | REVNO0<br>R<br>Initial value                      |  |
| (Revisio<br>7<br>-<br>-<br>ATAL (<br>7                                                                  | on ID read R<br>6<br>-<br>RI<br>ALS Clear C<br>6                 | egister)<br>5<br>-<br>EVNO[1:0]<br>H ADC Data<br>5            | 4<br>-<br>Revision ID<br>Low Regist                                                              | 3<br>-<br>read<br>ter)<br>3                 | 2                      | REVNO1<br>R                      | REVNO0<br>R<br>Initial value                      |  |
| (Revisio<br>7<br>-<br>-<br>ATAL (<br>7<br>DATAL7                                                        | on ID read R<br>6<br>-<br>RI<br>ALS Clear C<br>6<br>CDATAL6      | egister)<br>5<br>-<br>EVNO[1:0]<br>H ADC Data<br>5<br>CDATAL5 | 4<br>-<br>Revision ID<br>Low Regist<br>4<br>CDATAL4                                              | 3<br>-<br>read<br>ter)<br>3<br>CDATAL3      | -<br>-<br>2<br>CDATAL2 | REVNO1<br>R<br>1<br>CDATAL1      | REVNOO<br>R<br>Initial value<br>0<br>CDATALO      |  |
| (Revisio<br>7<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | on ID read R<br>6<br>-<br>RI<br>ALS Clear C<br>6<br>CDATAL6<br>R | egister)<br>5<br>-<br>EVNO[1:0]<br>H ADC Data<br>5<br>CDATAL5 | 4<br>-<br>Revision ID<br>Low Regist<br>4<br>CDATAL4<br>R                                         | 3<br>-<br>read<br>ter)<br>3<br>CDATAL3<br>R | -<br>-<br>2<br>CDATAL2 | REVNO1<br>R<br>1<br>CDATAL1<br>R | REVNOO<br>R<br>Initial value<br>0<br>CDATALO<br>R |  |

registers C/R/G/B/IR respectively. All ALS ADC data registers are read-only.



LifecyclePhaseTempApproved

**Expired Period: 3 Months** 

| 7           | 6               | 5                                        | 4           | 3               | 2                | 1        | 0             |     |
|-------------|-----------------|------------------------------------------|-------------|-----------------|------------------|----------|---------------|-----|
| RDATAL7     | RDATAL6         | RDATAL5                                  | RDATAL4     | RDATAL3         | RDATAL2          | RDATAL1  | RDATALO       |     |
| R           | R               | R                                        | R           | R               | R                | R        | R             |     |
|             |                 |                                          |             |                 |                  |          | Initial value | e : |
|             | R               | DATAL[7:0]                               | CS Red CH   | HADC channe     | el data low reg  | ister.   |               |     |
| DATAH       | ALS Red C       | H ADC Data                               | High Regist | er)             |                  |          |               | 1   |
| 7           | 6               | 5                                        | 4           | 3               | 2                | 1        | 0             |     |
| RDATAH7     | <b>RDATAH</b> 6 | RDATAH5                                  | RDATAH4     | RDATAH3         | RDATAH2          | RDATAH1  | RDATAH0       |     |
| R           | R               | R                                        | R           | R               | R                | R        | R             |     |
|             |                 |                                          |             |                 |                  |          | Initial value | e : |
| DATAL       |                 | CH ADC Dat                               | ta Low Regi |                 | el data high reg |          |               | 1   |
| 7           | 6               | 5                                        | 4           | 3               | 2                | 1        | 0             |     |
| GDATAL7     | GDATAL6         | GDATAL5                                  | GDATAL4     | GDATAL3         | GDATAL2          | GDATAL1  | GDATALO       |     |
| R           | R               | R                                        | R           | R               | R                | R        | R             |     |
|             |                 |                                          |             |                 |                  |          | Initial value | e : |
|             | G               | DATAL[7:0]                               | CS Green    | CH ADC chan     | nel data low re  | egister. |               |     |
| DATAH (     | ALS Green (     | CH ADC Dat                               | a High Regi | ster)           |                  |          |               | 1   |
| 7           | 6               | 5                                        | 4           | 3               | 2                | 1        | 0             |     |
| DATAH7      | GDATAH6         | GDATAH5                                  | GDATAH4     | <b>GDATAH</b> 3 | GDATAH2          | GDATAH1  | GDATAHO       |     |
| R           | R               | R                                        | R           | R               | R                | R        | R             | _   |
|             |                 |                                          |             |                 |                  |          | Initial value | e : |
|             | G               | DATAH[7:0]                               | CS Green C  | CH ADC chan     | nel data high r  | egister. |               |     |
|             |                 |                                          |             |                 |                  |          |               |     |
|             |                 | ADC Data                                 | Low Registe | arl             |                  |          |               | 1   |
|             |                 |                                          | 12.11       | 10              | •                |          |               |     |
| 7           | 6               | 5                                        | 4           | 3               | 2                | 1        | 0             | _   |
| DATAL7      | BDATAL6         | BDATAL5                                  | BDATAL4     | BDATAL3         | BDATAL2          | BDATAL1  | BDATALO       |     |
| R           | R               | R                                        | R           | R               | R                | R        | R             |     |
|             | 5253            |                                          | 00.01       |                 |                  |          | Initial value | • • |
|             | BC              | DATAL[7:0]                               | CS Blue CH  | ADC channe      | data low reg     | Ister.   |               |     |
|             |                 |                                          |             |                 |                  |          |               |     |
| ATAH (A     | ALS Blue Ch     | ADC Data                                 | High Regist | er)             |                  |          |               | 1   |
|             | 6               | 5                                        | 4           | 3               | 2                | 1        | 0             |     |
| 7           | BDATAH6         | BDATAH5                                  | BDATAH4     | <b>BDATAH</b> 3 | BDATAH2          | BDATAH1  | BDATAHO       |     |
| 7<br>Datah7 | DUNININ         | A 200 B 20 |             |                 |                  |          |               | _   |
|             | R               | R                                        | R           | R               | R                | R        | R             |     |

DATASHEET SMD • I<sup>2</sup>C Digital Color Sensor CLS-16D17-34-DF6/TR8

LitecyclePhaseTempApproved

R

15

**Expired Period: 3 Months** 

www.everlight.com

| 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0               |     |
|---------|---------|---------|---------|---------|---------|---------|-----------------|-----|
| BDATAL7 | BDATAL6 | BDATAL5 | BDATAL4 | BDATAL3 | BDATAL2 | BDATAL1 | BDATALO         | 1   |
| R       | R       | R       | R       | R       | R       | R       | R               |     |
|         |         |         |         |         |         |         | Initial value : | 00н |
|         | 1020    |         |         |         |         |         |                 |     |

Copyright © 2015, Everlight All Rights Reserved. Release Date : 5.22.2015. Issue No: DLS-0000156

## Appendix

#### **Brief Application Note**

A capacitor should be located close to VDD pin of color sensor to reduce power noise. The pull up resistors of two line serial bus are recommended to be around  $10k\Omega$ , especially a pull up registor for INT connected to host controller must be  $100k\Omega$ .



#### Hardware pin connection diagram

#### Notice

1) Operation voltage 1.7 to 3.0V

2) Set SLAVE address (Determined by ADDR pin condition during power-up)

Input Low : 0x33(0110011) => In Master IIC situation when writing and its value is 0x66 and when reading , its value is 0x67

Input High : 0x4C(1001100) => In Master IIC situation when writing, value is 0x98 and when reading, value is 0x99

Floating : 0x33(0110011) => In Master IIC situation when writing, value is 0x66 and when reaing, value is 0x67

3) IIC speed is the standard, about 100kHz.

When writing IIC Multi bytes (Single byte read and write rarely is used)

- Multi bytes Writing :

START(M)+SlaveAddress\_W(0x66,M)+ACK(S)+REG\_ADDR(0xxx,M)+ACK(S)+WRITE\_BYTE0+ACK(S)...+STOP(M)